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Abstract: Intra-tissue refractive index shaping (IRIS) is a novel, non-ablative form of vision 
correction by which femtosecond laser pulses are tightly focused into ocular tissues to induce 
localized refractive index (RI) change via nonlinear absorption. Here, we examined the 
effects of Blue-IRIS on corneal microstructure to gain insights into underlying mechanisms. 
Three-layer grating patterns were inscribed with IRIS ~180 µm below the epithelial surface of 
ex vivo rabbit globes using a 400 nm femtosecond laser. Keeping laser power constant at 82 
mW in the focal volume, multiple patterns were written at different scan speeds. The largest 
RI change induced in this study was + 0.011 at 20 mm/s. After measuring the phase change 
profile of each inscribed pattern, two-photon excited autofluorescence (TPEF) and second 
harmonic generation (SHG) microscopy were used to quantify changes in stromal structure. 
While TPEF increased significantly with induced RI change, there was a noticeable 
suppression of SHG signal in IRIS treated regions. We posit that enhancement of TPEF was 
due to the formation of new fluorophores, while decreases in SHG were most likely due to 
degradation of collagen triple helices. All in all, the changes observed suggest that IRIS 
works by inducing a localized, photochemical change in collagen structure. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

Following the success of inducing phase changes in ophthalmic hydrogels in 2006 [1,2], we 
proposed a new paradigm for refractive vision correction, in which corneal refractive 
properties can be modified without flap cutting or tissue ablation. This technique, termed 
Intra-tissue Refractive Index Shaping (IRIS), relies on tightly focused, low-energy 
femtosecond laser pulses to locally induce phase and refractive index (RI) changes in the 
corneal stroma via multiphoton absorption. While dopants were needed for 800 nm IRIS to 
enhance two-photon absorption and attain meaningful RI changes [3], Xu et al. [4] 
demonstrated that Blue-IRIS can more readily induce larger RI changes because of the 
significant, native two-photon absorption of cornea at 400 nm. Demonstrating feasibility of 
this approach, Blue-IRIS was then used to inscribe cylinder lenses in the corneas of adult cats 
in vivo; the change in refractive power of their eyes was verified with wavefront sensing and 
shown to persist for a year [5]. Histological analysis of Blue-IRIS in the cat cornea also 
showed markedly less cell death compared with femtosecond-laser in situ keratomileusis 
(LASIK) [6]. Meanwhile, our work in hydrogel materials demonstrated that 400 nm laser 
micromachining can locally decrease RI by increasing the water content of written regions, 
and it was assumed that this hydrophilicity was associated with depolymerization [7]. 
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However, whether the mechanisms by which Blue-IRIS induces RI changes in cornea are 
analogous to those in hydrogels remains unclear. Because Blue-IRIS appears to be a 
promising technique for vision correction, it has become necessary to thoroughly and 
systematically investigate the dependence of RI change on IRIS laser scanning and other 
parameters, and to characterize the tissue effects underlying these RI changes. 

Although thinner than human corneas (550 ± 40 µm), rabbit corneas (420 ± 20 µm) share 
many similarities with human corneal tissue, including microanatomy, biomechanical 
strength and molecular composition [8,9]. This makes the rabbit cornea a suitable model for 
vision correction studies. To explore the tissue effects of Blue-IRIS and its underlying 
mechanisms, a RI profile was built by inscribing IRIS patterns of different phase change 
magnitudes into the corneal stroma of ex vivo rabbit globes. Local structural changes were 
imaged and quantified using 810 nm-excited two-photon excited autofluorescence (TPEF) 
and second harmonic generation (SHG) microscopy. Multiphoton imaging techniques like 
TPEF and SHG have been shown to be sensitive probes for thick tissues and live animals due 
to their high axial resolution, large penetration depth and minimal photo-toxicity [10–12]. 
Despite the extremely low two-photon absorption probabilities, tissue and live animals 
normally have intrinsic fluorescent components with large effective cross-sections in the 
green and cyan parts of the spectrum, making TPEF feasible for in-depth and label-free tissue 
imaging [13]. While SHG can be used for similar spatial “optical sectioning” of thick tissues 
as TPEF, it can provide additional information on the amount and organization of fibrillary 
collagen in samples, as SHG signals originate from intrinsic, non-centrosymmetric molecular 
structures [14,15]. SHG sources within the focal volume generally remain phase-matched and 
emit coherently; however, phase-matching for backward propagation only occurs when the 
sources are aligned at a specific spatial frequency, thus resulting in much weaker backward-
SHG (B-SHG) signals [16,17]. Although there remains some controversy in explaining the 
complex second harmonic response from inhomogeneous SHG sources, the magnitude ratio 
of forward-SHG (F-SHG) and B-SHG, mostly denoted by F/B ratio, has been used to estimate 
the orientation and axial size of collagen fibrils [18,19], as well as distinguishing reactive or 
diseased tissues from normal ones [20]. The capability of backward detection is also 
noteworthy, considering the difficulties of collecting F-SHG signals in many in vivo tissue 
imaging cases. Since the majority of corneal lamellae are highly-hyperpolarized type I 
collagen, which can emit stronger SHG signals than most SHG generators [16], TPEF and 
SHG together are ideal techniques to use for visualizing structural modification induced by 
Blue-IRIS in the corneal stroma. 

2. Method 

2.1 Blue-IRIS instrumentation and procedure 

The femtosecond laser system used to perform IRIS (Fig. 1(a)) was comprised of a mode-
locked Ti:Sapphire oscillator (Vitesse; Coherent Corporation, Santa Clara, CA, USA) 
emitting 800 nm, 100 fs pulses at 80 MHz. The 800 nm beam was first frequency doubled 
with a second harmonic generator, passing through a metallic variable neutral density filter, 
and finally focused into each sample with a high numerical aperture (N.A. = 1.05), water-
immersion microscope objective (XLPLN25XWMP2, Olympus, Center Valley, PA, USA). 
With the laser beam under-filling the objective, the laser beam profile was measured using a 
knife-edge method [21,22] and the effective N.A. was calculated to be 0.26. Eye globes were 
mounted on a single-axis, nano-positioning stage on top of a two-axis, linear stage (ANT95-
L-Z and ANT95XY; Aerotech Inc., Pittsburgh, PA, USA) to enable precise, large-scale 
motion control. During IRIS, the objective was stationary while the phase gratings were 
written along the x-axis with different scan speeds. 

Six Dutch-belted rabbit eyeballs were obtained from an approved supplier (Technical 
Services Specialists, Inc. Walterboro, SC, USA). Post-mortem, the globes were immediately 
immersed in Optisol-GS (Bausch & Lomb Inc., Rochester, NY, USA) and shipped to our 
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Globes used for microscopy were prepared by first dissecting around the scleral rim, then 
immersion-fixing the cornea-containing piece in 4% paraformaldehyde in Phosphate Buffered 
Saline (PBS, 0.1 M, pH = 7.4) for 10 minutes. The tissue was then transferred to 30% sucrose 
in PBS (0.1 M, pH = 7.4) at 4 °C for another 24 hours for cryo-protection before sectioning. 
After that, each cornea was mounted in OCT compound (Tissue Tek; Sakura Finetek, 
Torance, CA), frozen and sectioned into 20 µm-thick slices using a cryostat (2800 Frigocut E; 
Leica, Bannockburn, IL). Slide-mounted sections were then rinsed in 0.1 M PBS solution, 
lightly dried in an oven and cover-slipped with antifade mounting medium (VECTASHIELD 
H-1000, Vector Laboratories, Burlingame, CA). 

2.3 Measurement of IRIS-induced phase changes 

Phase change was measured on a custom-built MZI using a 633 nm He-Ne laser (Fig. 1(b)), 
with the mounted cornea placed on a XYZ translation stage in the test arm. An interferogram 
and its co-located bright field image (taken by blocking the reference arm), were collected for 
each IRIS pattern. Similar to the method we have used earlier to quantify phase change in 
hydrogels [25], the phase map corresponding to each corneal interferogram was calculated 
using the carrier fringe methods [26], and the induced phase change was unwrapped with the 
Goldstein’s branch cut unwrapping algorithm [27]. To reduce the effect of low-frequency 
phase variations across the interferogram caused by residual aberrations and wrinkles in the 
cornea, each IRIS pattern was measured at 10 different positions to collect 10 pairs of phase 
change values with corresponding standard deviations. All these calculations were conducted 
automatically using a MATLAB (MathWorks, Natick, MA) program, and the same procedure 
was repeated on three different eyes. 

2.4 TPEF and SHG microscopy 

Image acquisition was performed with a Fluoview FV300 confocal scanning system 
interfaced with a BX61WI upright microscope (Olympus, Center Valley, PA), and the 810 
nm circular-polarized beam was generated by a MaiTai Ti:Sapphire laser (Spectra Physics, 
Santa Clara, CA) at 100 fs, 80 MHz, passing through a Berek’s compensator (Fig. 1(c)). 
Backscattered signal was collected by a XLUMPLFL20XW water-immersion objective (N.A. 
= 0.95, Olympus), while another Olympus 0.9 N.A. condenser lens was used to collect the 
forward scattered signal simultaneously. On the forward channel, the emission signal was 
separated from the excitation beam by a long-pass dichroic mirror (565 DCSX, Chroma, 
Rockingham, VT), passing through a 405/30 nm bandpass filter (HQ405/30 m-2P, Chroma), 
and was collected by a photomultiplier tube (PMT, HC125-02, Hamamatsu Corporation, 
Japan). Besides a short-pass dichroic mirror (670 DCSX, Chroma) used for beam separation, 
a 525/100 nm bandpass filter (HQ525/100 m, Chroma) was used before PMT to collect the 
autofluorescence signal on the backward channel. This filter was replaced with a 405/30 nm 
filter when collecting backward SHG. Laser power, PMT voltage, gain and offset were 
monitored and kept constant throughout the experiment. Using the surface scan mode, each 
scan took 5.36 s with a 2 µm step size, obtaining two image stacks on both channels 
simultaneously. Each image stack was maximum-intensity projected in ImageJ, in order to 
“autofocus” each stack into one comparable image. Background was defined as the average 
pixel counts of two equivalent laser-excited image stacks captured from an area without tissue 
on both channels, and maximum-intensity projected background images were subtracted from 
all original images to create background-subtracted TPEF, F-SHG and B-SHG images used 
for subsequent analysis described below. Image stacks of each IRIS pattern were collected 
sequentially from 4 samples of each eye, and 324 projected images were analyzed in total. 

A MATLAB program was written to quantify the TPEF intensity of the IRIS patterns by 
manually selecting a region of interest (ROI) around IRIS patterns and extracting the 
histogram of each ROI (Fig. 2(a)). Since the histogram is a distribution of the number of 
pixels with respect to their intensity, the two peaks in the histogram correspond to the 
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affecting the pulse energy deposited at each point within IRIS lines. Because of the eye’s 
exposure limit, the entire IRIS process needs to be as fast as possible. However, sufficient 
power is also needed to induce localized nonlinear absorption. Therefore, with the laser 
power fixed, a relationship between phase change and scan speed acts as a useful calibration 
function for the induction of refractive structures in the cornea. 

The effects of Blue-IRIS on collagen fibrillar organization were studied using both TPEF 
and SHG microscopy. Compared to the native corneal stroma, IRIS treated regions were 
characterized by a dramatic increase in TPEF. Because phase change is a monotonically 
decreasing function of scan speed, it can be deduced from the quantification results of 
fluorescence intensity that below the optical breakdown threshold, the higher the induced RI 
change, the stronger the autofluorescence in treated zones. For the patterns written at 100 
mm/s, whose phase changes were too low to be resolved on the MZI, a ~115% increase in 
TPEF was still observed. Therefore, at 100 mm/s, the IRIS process may have altered protein 
structure in the corneal extracellular matrix in a manner sufficient to change its fluorescence 
but insufficient to alter the material’s RI. Corneal fluorescence originates from the 
endogenous fluorophores physiologically present in corneal structures [29], and this 
enhancement was associated with possible photochemical reactions in macromolecules 
following laser irradiation. Vogel et al. and Wang et al. reported that free electrons can be 
generated via multiphoton ionization even when the femtosecond irradiation energy was 
below the optical breakdown threshold. This ionization field could trigger molecular reactions 
in the focal volume without introducing damaging thermoacoustic and shock waves [24,30]. 
Hovhannisyan et al., reported a substantial autofluorescence increase in type I collagen from 
rat tail tendon and bovine Achilles’ tendon under 780 nm, 120 fs laser pulse illumination. 
They hypothesized that the observed increase of autofluorescence was due to the formation of 
bi-tyrosine structures, a laser-induced photo-modification affected by both the concentration 
of native collagen and the amount of photoproducts present [31,32]. Tyrosine is a 
hydrophobic aromatic amino acid and the main chromophore of collagen molecules [33]. A 
spectroscopic study from Wisniewski et al. stated that tyrosine exhibited a higher quantum 
yield of fluorescence compared with other amino acids in collagen polypeptide chain [34]. 
Manickavasagam et al. studied the laser irradiated collagen degradation of acellular type I 
collagen gels and noticed a similar phenomenon when gels were point-irradiated using 
infrared femtosecond lasers [35]. Drawing from previous studies, it may be that the increased 
autofluorescence in IRIS regions can be attributed to the photo-degradation of collagen 
fibrils, and the formation of new fluorophores - perhaps tyrosine dimers - in Blue-IRIS-
treated zones [36]. 

Besides changes in molecular composition suggested by TPEF, SHG offers another 
perspective on potential alterations in collagen structure at the fibrillar level. As can be seen 
from Fig. 5, IRIS patterns, especially those with higher phase change, can be easily 
distinguished from the native stroma in SHG images, with a noticeable suppression of SHG 
signal in IRIS-treated regions. Quantitative analysis of SHG showed that larger phase changes 
were associated with larger decreases of F-SHG compared to B-SHG intensity. At the 
macromolecular level, the elementary source of efficient second harmonic emission in 
collagen molecules results from the peptide bonds along the three helical chains, even though 
individual molecules are un-observable by SHG [37,38]. Weakening of F-SHG suggests a 
loss of the non-centrosymmetric collagen organization in IRIS-treated regions of the stroma, 
likely caused by alteration of the triple helix structure. We have done an extensive study of 
the changes in the collagen fibrillar organization using transmission electron microscopy 
(TEM). This study was done under similar conditions and supports our interpretation of the 
decrease in SHG [39,40]. In this study TEM, chemical hybridization and 
immunohistochemistry were used to show significant disruption and alteration of collagen 
organization in Blue-IRIS treated regions of the cornea. TEM revealed that both the pseudo-
hexagonal arrangement of collagen fibrils and collagen D-banding were lost in Blue-IRIS 
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regions. The TPEF/SHG results in the present manuscript represent an additional “signature” 
of these ultrastructural changes, confirming with a different approach that IRIS causes highly 
localized loss of fibrillar structure. 

Analysis of B-SHG revealed a lack of significant change as a function of IRIS scan speed. 
B-SHG signals can be detected if the axial distance between adjacent sources is smaller than 
the coherence length of the scattering process, which is a function of the excitation and 
emission wavelengths [19,41,42]. It is known that corneal collagen fibrils are built from about 
4 - 8 nm wide microfibrils that are stabilized by covalent intermolecular and intramolecular 
crosslinking [43]. With microfibrils aligned to the fibril long axis, this super-helical fibrillar 
structure exhibits a ~65 nm axial periodicity and each fibril acts as a scatter of incoming 
waves [44,45]. The lack of a statistically significant change in difference in B-SHG intensity 
as a function of IRIS scan speed suggests that there was no significant change in the spaces 
between neighboring fibrils. This, combined with the significant change in F-SHG further 
suggests that spatial disorder of fibrils, but not interfibrils spacing, is likely the key 
contributor to the observed SHG suppression. 

The ratio of F-SHG to B-SHG ranged between 0.79 and 1.19 in IRIS-treated regions and 
did not vary significantly with IRIS scan speed, nor compared to the natural stroma. Although 
F/B ratio can provide information on the length scale of sources along the optical axis, 
different properties such as fibril thickness, ratio of different collagen components, and 
regularity versus irregularity are all possible causes for alterations of F/B ratio [17]. 
Therefore, at this stage, based on the F/B ratio results, we cannot determine which of these 
structural properties, if any, were altered after IRIS. 

Depending on the deposited laser energy and tissue optical properties, laser-tissue 
interactions can result in either photochemical or thermal reactions. Under the breakdown 
threshold, chemical effects or reactions can be induced within tissues in the photochemical 
regime; in contrast, thermal modification features the denaturation of proteins or tissue 
removal after moderate temperature increase [46]. Thermal denaturation normally involves 
heat generation and dissipation during the interactions between tightly focused laser pulses 
and collagen. Thermal effects could disrupt the collagen matrix via conduction. However, 
under the damage threshold, this generally cannot introduce significant change in SHG signal 
since it does not alter the interatomic bonds in collagen molecules [35]. Additionally, an 
earlier study showed that during collagen thermal denaturation, SHG suppression was 
accompanied by a decrease in fluorescence, which was caused by the thermal decomposition 
of the fluorophores [47]. Since the change in IRIS-induced SHG intensity was opposite to that 
of autofluorescence, Blue-IRIS most likely leads to a photochemical (rather than thermal) 
degradation of stromal collagen fibril organization. 

When analyzing how SHG intensity correlates with IRIS-induced RI change, one 
limitation lies in the quantification of the absolute SHG intensity of regions outside the IRIS 
zones. As illustrated by the F-SHG and B-SHG images in Fig. 5, collagen fibers in the 
anterior stroma are more randomly organized and more densely-packed than those in the 
posterior stroma; this inhomogeneous distribution can lead to variation of the SHG intensity 
at different optical planes. Therefore, instead of measuring the average pixel intensity of the 
entire image, similar size of ROIs at the same axial depth were quantified and defined as the 
SHG intensity from regions outside the IRIS zones. However, partial corneal tissue was lost 
in some samples during the cryostat sectioning, which introduced a larger deviation of the 
SHG intensity change than that of the fluorescence intensity. Nevertheless, compared with the 
qualitative approach generally used in multiphoton microscopy imaging studies, the present 
study illustrates that it is possible to use quantifiable SHG parameters to discriminate 
different refractive phase structures, and that the dual-modal imaging method hereby 
described can provide useful, complementary insights into structural changes of the corneal 
collagen matrix. 
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5. Conclusion 

The present set of experiments allowed us to build a phase change profile for Blue-IRIS as a 
function of scan speed in the living cornea, using it to calibrate changes in SHG images for 
the first time. Approximately 0.51 waves of phase change could be obtained from IRIS when 
writing at 20 mm/s with 82 mW laser power, corresponding to a RI change of + 0.011. The 
effects of Blue-IRIS on corneal collagen organization were studied using simultaneous TPEF 
and SHG microscopy. By quantifying the intensity difference between IRIS-treated and 
untreated regions of the cornea, a significant increase in autofluorescence and decrease of 
SHG signals were observed in proportion to the increased phase change. This work provides 
compelling evidence that considering F-SHG as well as B-SHG in a quantitative manner can 
give useful insights into corneal collagen structure. We believe this particular combination of 
TPEF and SHG signatures indicates that Blue-IRIS modified the organization of collagen 
triple helices at a molecular level, and that this caused degradation of collagen fibril 
arrangement. Ongoing research is seeking to ascertain more specifically what features of the 
collagen microstructure, e.g. fibril density, diameter, direction, and molecular composition, 
are modified by Blue-IRIS. These findings provide valuable insights into potential 
photophysical mechanisms by which Blue-IRIS induces a RI change in the cornea. 
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